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L. MOTIVATION

The theoretical study of the rates of condensed phase chemical reactions
is, by comparison with the gas phase, in an early state of development.
However, the last few years have seen renewed interest in the subject, with
important new results being obtained, and this in turn has spurred novel ex-
perimental activity.

When compared with reactions in the gas phase, the theory of condensed
phase processes meets the additional difficulty of having to deal with solvent
interactions, but the detailed understanding of their effects is crucial in many
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areas of chemustry, biology, and related sciences. Among the interactions be-
tween the reactive species and the solvent, we should distinguish the specific
interactions (e.g., electrostatic or those originating from hydrogen bonding)
from the stochastic forces generated by the thermal motions of the solvent
particles. In this chapter we shall be concerned only with interactions of the
latter type and discuss some recent developments.

The strength of the stochastic interactions between the solvent and the re-
actant may be described (in the Markovian case) by a parameter v, the
damping rate or friction coefficient, which is some measure of the coupling
at the microscopic level and is related to the macroscopic viscosity, density,
or pressure. Viscosity effects on reaction rates have been known for a long
time, but the understanding of the mechanism of these interactions and of
the most general form of their effects was very poor. The so-called cage effect
is commonly used in discussing the observed viscosity dependence of the re-
action rates.'”* The motion of the reactant(s) into the reacting position, the
“encounter” in the language of collision theory, is hindered by higher viscos-
ities 1, and in the diffusive regime the number of these encountersis Z & 1.
However, this same factor increases the difficulty for the reactant(s) to move
out of position, providing a sort of cage wall, and the time spent inside this
cage, or the number of collisions following the initial encounter, is # & 7. Any
reaction rate that is proportional to the total number of collisions, Z X n,
will be independent of the viscosity. Under certain circumstances, however,
the rate will be proportional to Z o« 1. One class of processes where this is
well known to happen is the quenching of fluorescence, where the chemical
process is so fast that the rate is controlled by the diffusion of the quencher
to the excited molecule.* Similar behavior is observed in very fast proton-
transfer reactions.” For very high viscosities, the quantity » will be very large,
the chemical reaction will always occur at an early stage of the encounter,
and the rate will be proportional to Z o 5~ !. Then, we should expect that
the rate of a chemical reaction would always go as n~! for sufficiently high
viscosities.

In the other extreme case, when the coupling of the reactant(s) to the
solvent is very weak, the reaction rate will also decrease. In fact, once the
higher energy molecules have reacted, the replenishment of this top energy
layer will be too slow to maintain thermal equilibrium and the rate will slow
down.

We shall show that this behavior is predicted in all stochastic theories, the
major effort being directed to understanding the conditions when such ex-
treme regimes fail and to predicting the detailed general form of the rate
constant.

The most widely used theoretical tool for the understanding of chemical
kinetics is still the transition state theory (TST) in its original form,® or in
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one of its modern versions.” Because it is used throughout this chapter as a
major reference for comparison of the results obtained with the stochastic
theories, it is useful to recall its basic principles and final expression. Con-
ventional transition state theory depends on the following general assump-
tions (for a detailed discussion of the theory, see, e.g., ref. 8):

1. The rate of a chemical reaction may be calculated by focusing
attention on the “transition state,” the region near the col or saddle
point of the potential energy surface that must be crossed in the
process of converting the reactants into products.

2. 'The transition state is in quasi-thermodynamic equilibrium with the
reactants, and the removal of the products does not affect the
reactants’ equilibrium up to the transition state.

3. In the region around the col, the motion along the reaction coordi-
nate can be treated as free translational motion.

The rate kg7 is calculated as the product of the population at the transi-
tion state and the frequency at which one such species will go into products.
The final result may be cast in the form

(1)

KT O, ( E, )
krst=k A -

o0, P\ T K,T

where Q, and @, are the partition functions associated with the transition
state and the reactant, respectively, £, is the activation energy (the poten-
tial energy of the col above the ground state of the reactants), and #, K,
and T have the usual meaning. « is the so-called transmission coefficient, an
ad hoc factor usually taken close to unity, measuring the fraction of the for-
ward moving transition state molecules that actually become products and
are not reflected.

If one considers a system with a single degree of freedom, ¢, =1 and Q,
=(1— hwy /KyT) ' =K T/hw, (for K,T = ha,), the partition function
of the harmonic vibration of the reactant, the TST rate is given by

@ E
Korse = ﬁe"p( - K:T) 2)

if the transmission coefficient is assumed unity. This is the TST rate expres-
sion that we will always consider in later sections.

The most interesting applications of transition state theory have been,
perhaps, in solution chemistry, and a number of detailed improvements have
been made to bring in some of the effects of the solvent. This has been done
mostly within the framework of thermodynamics by introducing in Eq. (1)
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the solvent dependence of the assumed equilibrium between reactants and
transition state. The activation energy is then solvent-dependent, and quan-
tities like activation entropy and activation volume are used in the discus-
sion. (This is thoroughly treated in standard textbooks, for example, in ref.
1.) Other effects originate in the intrinsically dynamic interactions between
solvent and solute and are thus not amenable to this kind of thermodynamic
treatment. The stochastic theories that have expanded so much in these last
few years attempt to deal with these more complicated interactions.

The plan of this chapter is as follows, In Section II, the basic ideas of the
method of Kramers are reviewed, and recent generalizations, especially the
progress made in bridging the two Kramers limits, are discussed. The
remainder of the chapter is devoted to discuss two lines of current develop-
ment of the theory that seem very promising for the interpretation of chem-
ical rate processes in condensed media. Section I1I deals with the problem
of the interaction of the reactive coordinate with other nonreactive modes
and establishes a connection with the field of nonequilibrium nonlinear stat-
istical thermodynamics. The difficulties arising from the breakdown of the
hypothesis of time-scale separation (non-Markovian effects) which may be
very relevant in condensed phase processes are considered in Section IV, The
improved physical interpretation that may be achieved by the general
strategy that is the subject of this volume is discussed in Section V. We should
note that the three cornerstone techniques of the delta-like strategy pro-
posed in Chapter I are used in Sections III and IV.

Il. THE KRAMERS MODEL AND ITS EXTENSIONS

For our purposes, a chemical reaction is viewed as the passage over a
barrier of a particle under the influence of random forces originating in its
environment. It was Marcelin® who first represented a chemical reaction by
the motion of a point in phase space, thus using for the first time the rigor-
ous methods of statistical mechanics. He suggested that the course of a
chemical reaction could be followed by the trajectory of a point in the 2n-
dimensional space defined by the n position coordinates necessary to
describe the reacting system together with the corresponding conjugate
momenta.

Inspired by Christiansen’s'® treatment of a chemical reaction as a diffu-
sional problem, Kramers'! studied the model of a particle in Brownian mo-
tion in a ope-dimensional force field and predicted the existence of three
fundamental kinetic regimes, depending on the magnitude of the friction. The
basic hypothesis and results of this work will be summarized below, as many
of the results most recently obtained using more sophisticated models are still
best described by reference to Kramers’ original model and reduce to
Kramers models when the appropriate limits are taken.
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Figure 1. The Kramers potential.

A. The Kramers Model

Consider an ensemble of noninteracting particles—the reactant—under
the mfluence of (1) a force derived from an external one-dimensional poten-
tial F(x) consisting of a well 4 and an adjacent barrier C (see Fig. 1) and
(2) an irregular force resulting from random collisions between the reactant
particles and solvent particles at a given temperature T.

Kramers'! identified the chemical reaction with the escape over the bar-
rier of the reactant particles initially located in the potential well. The irreg-
ular force simulates the interaction with the solvent, which is thus treated as
a heat bath.

The motion of a particle (mass M) in the Kramers model may be de-
scribed by the following Langevin equation:

x=v (3a)
b=—yo— 375+ 5:F(1) (3b)

where ¥ 15 the friction coefficient (or damping rate} and F() is the irregular
force associated with the coupling to the heat bath. This force is assumed to
be Markovian, thai is, the forces at different times are assumed to be uncor-
related. It may then be defined by

{(F(1))=0 (4a)
(F(0)F(1)) =2yMK ;T8(¢) (4b)

where Eq. (4b) is an expression of the fluctuation-dissipation theorem,'?

which relates the friction v with the magnitude of the irregular forces acting
on the particle.

The Langevin equation (3a,b) is equivalent to the following Fokker-
Ptanck equation which drives the probability distribution in phase space:

Doyl opdy LV N8 KT N
LA Sl vl v M R I Pl vl LA
(5)
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In order to obtain simple analytical results from this equation, Kramers as-
sumed further that (3) the potential is parabotic near 4, ¥{(x) = 1 Mwix?, and
near C, V(x)=Q — tMwi(x — x_)?, and that (4) the height of the barrier is
much larger than the thermal energy, E, = K7, so that the reaction pro-
cess is siow and quasi-stationary. Under these conditions he was able to ob-
tain the following simple expression for the rate of particle flow over the

barrier:
1/2
_ Y 4ep) _E
k= dme; [(1+ 2 ) : 1]6Xp( T (6)

It is important to consider two hmiting cases where this general expres-
sion may be simplified. For small frictions, y < 2w, Eq. (6) gives the same
expression as that obtained earlier in transition state theory,

w E
k"{sr”—”ﬁexp(—K_;}) Y <20, (7)

The condition of validity of this expression is easily understood. If the time
scale of the damping, 1/v, is much larger than the time scale of the motion
atop the barrier, 1 /w,, then the particle will have an effectively free motion
in its downhill path out of the well. It should be kept in mind that this is
exactly one of the fundamental hypotheses of transition state theory. It would
be wrong, however, to conclude that there is no lower limit on the friction
for the correct applicability of the TST expression. For extremely low fric-
tions, the coupling to the heat bath is no longer able to maintain the quasi-
thermodynamic equilibrium in the well, thus invalidating an assumption
made by Kramers to derive Eq. (6) and also the underlying conventional TST.
For this extreme low-{riction region, Kramers! was able to calculate the tate
by converting the Fokker-Planck equation [Eq. (5)] into a diffusion equation
for the energy; the exchange of energy between the heat bath and the par-
ticle is the rate-limiting step in these conditions. The following approximate
rate equation was obtained:

E E
klow =Y L exp - & (8)
KT K,T

This energy diffusion process should apply when the characteristic time of
damping, 1 /v, is much larger than the time of equilibrium escape of a par-
ticle from the well, 1 /& 1.
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Figure 2. The reaction rate in the Kramers model refative to its transition state value. The
low friction rate is plotted for (w, /wo) E, /KgT)=1 (a), 2 (b)), 5 {c), 10 {(d), and 20 (e).
Also plotted is the interpolated rate of Eq. (13) and that caleulated by Buttiker, Harris, and
Landauer.” (-—) kg /sty () kpggn/ kst (=) kyow sty (=) ki /sy (=07
KeuL / kst

Kramers" suggested that transition state theory should apply in the range
of frictions (K zTw, /27E,) < v < tw,, the lowest limit corresponding to the
point where expressions (7) and (8) give the same rate value.

The general Kramers expression {6) may be simplified in the region of very
high friction, v > 2w,, where a purely diffusive regime is attained,

_ Yo%y - £y
ki’ligh_ 2WY exp( KBT) (9)

The plots in Fig. 2 suggest that the limits of validity of transition state the-
ory may be fairly narrow or altogether nonexistent, contrary to the predic-
tion made by Kramers. The nonequilibrium effects duly treated for
extremely low friction may start being felt before the TST plateau is ap-
proached. This is more likely to occur for the lower barriers and larger ratios
Wy /03,

The following argument may help in understanding the connection be-
tween the extreme low-friction regime and the diffusive one. Kramers iden-
tified very clearly the two processes that determine the rate of escape: the
thermal escape out of the bottom of the well and the actual diffusive cross-
ing of the barrier. The slowest of the two becomes the limiting step and de-
termines the overall rate given by Eqgs. {8) and (), respectively. If we assume
that these are successive processes according to the scheme

kE L4
A=A4A*—> B (10)

kf
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we can easily calculate a rate expression valid for all frictions. The overall
rate of scheme (10) is given by k., =k E/(k[ + k) and the Boltzmann
equilibrium requires that (kZ/kfF) = exp(— E, /K ,T). The following limits
are clearly satisfied:

i E
k> kE kim=kfexp(——K bT) =k, (11)
B

E
k* < kF km,mk%mp( L )

)= kx (12)

and the general expression for the overall rate may be written as

Kin = Kiow + k! (13)
The results of this two-step model are also shown in Fig. 2.

Birttiker, Harris, and Landauer'® refined the Kramers treatment of the
low-friction case, allowing for a nonzero density of particles at the energy of
the barrier, and obtained an expression for the rate k5, which may be cast
in the form

[1 +4kTST/klaw]1/2“ 1
[1+4krgr /e ]2 41

kpuL = klow (14)

This expression converges to k gy for high friction and starts correcting

k 1o according to

low
k {1 (klow )1/2+1(k10w) I(klow )3/2+1(k10w )2 }k

B kst 2\ ksr)  Flkrst "\ kst fow
while Eq. (13) introduces a correction of the form

klow klow ?
kint {1_( kK )+( kl( ’ klow (16)
As may be seen by comparing Egs. (15) and (16) and also by inspection
of the plots in Fig. 2, our interpolating expression gives a rate higher than
that calculated by the method of Bittiker, Harris, and Landauer'®, but for

higher frictions it approaches the Kramers function in the correct way. (See
Section ILB for further discussion of this point.)
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Figure 3. The unidimensionat bistable potential.

B. The Bistable Model and Other Generalizations
of the Kramers Method

In the model studied by Kramers,!! the particles are assumed to be ini-
tially at the well around A and to be lost as they escape above the barrier.
Many physical processes, however, are more realistically modeled by a bi-
stable potential (see Fig. 3), namely when two states 4 and B may be inter-
converted. In the original Kramers model no back-crossings from B to 4
were considered; the particles were somehow absorbed as they arrived at B.

A=B (17)

It should be noted that states 4 and B are not well-defined states but rather
probability distributions around the potential minima A and B. For high
barriers hike those assumed originally by Kramers, there should be no am-
biguities, but one should be careful when dealing with small barriers. One
way to deal with this problem rigorously is to work with the eigenvalues of
the operator driving the probability distribution in time. For simplicity, con-
sider the case of a symmetric potential, and let ¢,(x) be the eigenfunctions
associated with eigenvalues A . The following interpretation emerges from
an interesting paper by van Kampen'*: ¢,(x) (A,=0) is the equilibrium
distribution; the lowest nonzero eigenvalue, A, is usually the one defining
the chemical relaxation rate, as it corresponds to the slowest time scale, and
its associated eigenfunction ¢,(x) is antisymmetric. To this first level of ap-
proximation, the probability distribution is given by @ (x)+

g, {x)exp(— A7) and describes the evolution from ¢ = 0, when the two func-
tions may cancel each other in the right-hand well, up to the final equi-
librium distribution gy(x). It is easy to see that A, =k, + k,, and the
individual one-way rate constants may be determined if the equilibrium
constant is known as well. Other methods of avoiding this ambiguity consist
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of calculating the expectation value of the position, (x), (see, e.g., ref. 15) or
the total population in a well defined by n (v) = ¥ dxp(x, ¢} (see, e.g., ref.
16) and look for the time evolution of these variables.

Brinkman'’ considered the bistable potential problem and showed that the
diffusive, very-high-friction regime of Kramers was still correct,

. Wa V.-V,
bigh = 3y e"p( KT ) (18)
;o Wa% - V.—Vg

K fign 3y exp( K.T ) (19)

Instead of the quasi-stationary state assumption of Kramers, he assumed only
that the density of particles in the vicinity of the top of the barrier was es-
sentially constant. Visscher'® included in the Fokker-Planck equation a
source term to account for the injection of particles so as to compensate those
escaping and evaluated the rate constant in the extreme low-friction limit.
Blomberg!® considered a symmetric, piecewise parabolic bistable potential
and obtained a partial solution of the Fokker-Planck equation in terms of
tabulated functions; by requiring this piecewise analytical solution to be
continuous, the rate constant is obtained. The result differs from that of
Kramers only when the potential has a sharp, nonharmonic barner.

Brinkman,'” Landauer and Swanson,” and Donnelly and Roberts*' made
important progress in extending Kramers’ methoed to models with several
spatial dimensions. For the relatively simple modeis that were worked out,
the major conclusions attained by Kramers do hold well. (A more detailed
discussion of this point is given in the next section.)

Van Kampen** presented a detailed analysis of a specialized one-dimen-
sional, symmetric double-well potential and obtained expressions for the ei-
genfunctions and eigenvalues of the associated Smoluchowski equation. He
was able to reproduce and correct the Kramers result in the diffusional limit
and clarified the various relaxation processes that occur in the different time
scales of a reaction process with a high barrier. Taking as initial distribution
a delta-like function placed at the bottom of one well, which is equivalent to
considering a linear combination of infinitely many excited states, he showed
that a quasi-equilibrium is attained after an initial fast relaxation process;
this quasi-equilibrium consists of an equally weighted linear combination of
the ground state (the equilibrium distribution) and the first excited state. The
eigenvalue of the first excited state corresponds to the Kramers rate of escape.
This shows how the Kramers theory gives a satisfactory description of the
slow escape process, while an accurate picture of the faster processes, con-
sisting mainly in the initial relaxation inside the well, would require the
evaluation of an overwhelming number of excited states.
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Larson and Kostin® considered a symmetric double-well potential and
solved the Fokker-Planck equation driving the probability distribution in
phase space, assuming the barrier to be high. Three cases were considered:
the diffusional limit, where the Smoluchowski equation may be used; an in-
termediate range of the friction coefficient y; and the limit of very low fric-
tion. A variational approach was used to calculate the eigenvalues, and the
eigenfunctions were obtained by a perturbational technique. For high and
intermediate values of the friction, asymptotic formulas for the rate are given,
their accuracy heing tested against numerical calculations. Starting from the
limit v — 0, they proposed a sennempirical expression apparently valid for
all frictions and suggested that the lower limit of validity of TST would be
far higher than predicted by Kramers.!! (See also the discussion at the end
of Section I1.A.)

Several other attempts have been made to derive general expressions for
the chemical rate, valid from the extreme low-friction regime to the mod-
erate and high friction ones. Earlier, Visscher? had performed numerical
calculations in the transition region between low and intermediate friction
regimes and fitted a one-parameter expression which appeared to cover the
entire range of frictions. Skinner and Wolynes'® constructed a sequence of
Padé approximants from the analytical results known for small friction and
large friction; atthough some theoretical difficulties may arise with this use
of the approximants, the results obtained seem very satisfactory. The same
technique was applied very recently by Garrity and Skinner.*! Monigomery,
Chandler, and Berne?® used a stochastic dynamics trajectory method to solve
the bistable either piecewise harmonic or piecewise constant potential and
found that the actual rate was always below 50% of the TST value. (For
comparison with Fig. 2, we note that the parameters taken correspond to
E, /KT =409 and, for the piecewise harmonic potential, w,/w, = 3.05.)

Buttiker, Harris, and Landauer'? extended the treatment made by
Kramers'! for the extreme low-friction regime to take into account the effect
that the flow of particles out of the well has on their distribution inside the
well. They obtained the rate expression of Eq. (14), valid from the extreme
low-friction region up to intermediate friction but converging to the TST
value (see Fig. 2). Carmeli and Nitzan®® proposed a new approach based on
a division of the particle phase space into two overlapping regions. In the
first, for the lower energies deep inside the wells, the variation of phase 1s
assumed to be much faster than that of the energy, and a diffusion equation
for the energy will hold. The second corresponds to the higher energy region
near the top of the barrier, where a spatial diffusion of the particles may be
assumed. The final expression for the rate, k., may be written in the form

koh =7+ skt (20)
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where r, is the mean first passage time for the particle to reach the boundary
between the two regions referred above, &k is the Kramers rate given by Eq.
(6}, and s is a complicated factor assuming values between § (for y — 0) and
1 (for large v). This method and the final result, Eq. (20}, should be com-
pared with the very simplistic two-step model discussed at the end of Sec-
tion IL.A. The factor s now introduced makes the rate & - always larger than
k.. but closely related to it. Moving away from the smallest frictions, the
corrections introduced are of the form

ko ko 02
ch"-{l*S(k]—:)Jrsz(Téi’:-) ---}klow (21)

if we identify 7, ' = k... As the factor s is close to 3 in this region, it is clear
how k- is closer to k,,,, (or more rigorously, to 7, ') than &,,. A factor
s =3 for the first-order correction in the form of Eq. (21) had been pro-
posed earlier by Visscher™ to fit the numerical results of a Kramers-type
model that includes a source term. This should be contrasted with the re-
fined Kramers treatment of Bittiker, Harris, and Landauer,'> which over-
corrects £ ,,,, by comparison with the two-step model. [See Eqgs. {14) and (15)
and Fig. 2.] The approach of Carmeli and Nitzan has been generalized by
the same authors to the non-Markovian case, but this is the subject of Sec-
tion IV,

Very recently, Lavenda®’ devised an interesting method of solution of the
Kramers problem in the extreme low-friction limit. He was able to show that
it could be reduced to a formal Schrodinger equation for the radial part of
the hydrogen atom and thus be solved exactly. One particular form of the
long-time behavior of the rigorous rate equation coincides with that ob-
tained by Kramers with the quasi-stationary hypothesis and may thus clarify
the implications of this hypothesis. The method of Lavenda is reminiscent
of that used by van Kampen'* but appiied to a Smoluchowski equation for
the diffusion of the energy.

IIl. MULTIMODAL THEORIES

In the Kramers!' model, the reaction process is described by the motion
of a particle along a single coordinate. This is what in the jargon of chemical
kinetics is called the reaction coordinate, a concept lacking rigorous defini-
tion in most cases. In actual problems of chemical interest, the barrier may
be fairly wide near the saddle point and, besides, the normal mode sep-
aration may break down in that region. Real systems do usually require a
many-coordinate description, and the coupling among these modes may play
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an important role in the rate process. Landauer and Swanson™ extended
Kramers’ work to the general multidimensional case to find that in the diffu-
sive regime (high friction) the rate expression showed the same deviation
from the TST value as that found in one dimension. In the other extreme
case, for very low frictions, however, there appeared to be an effect of di-
mensionality, It is the aim of this section to evaluate the results obtained with
multimodal theories, and we start by discussing in Section IILA two inter-
esting attempts to deal with more detailed models, one to bring in the effects
of the solvent, the other to deal directly with a two-dimensional coupled sys-
tem. Later, in Section II1.B, another detailed model is presented which aims
to supplement the results of these two works.

A. Two Detailed Models

The two particular models of mode coupling that we shall briefly discuss
in this subsection are illuminating about the many different mechanisms that
are involved and the difficulty in establishing a general simple pattern.

Grote and Hynes?® studied a model for an exchange reaction in sofution,

A+BC = AB+C (22)

assuming that the motion in the saddle region is separable into reactive and
nonreactive normal modes. The solvent dynamics act on the motion on each
mode and may also induce a dynamical coupling among them. In the par-
ticular case of Eq. {22), the reactive mode is the antisymmetric stretch of the
molecular system ABC. For example, it is easy to see that the solvent reac-
tion forces upon the translational mode (one of the nonreactive normal
modes) will couple this one into the reactive mode. This coupling may have
three sources: (1) the different masses of the atoms, (2) the different friction
on the central atom relative to the more exposed external atoms, and (3) the
cross correlation between the atomic forces. Grote and Hynes deseribed the
motion on each coordinate ¢, by a generalized Langevin equation of the type

4.(1) =~ elg ()= X [Tdry, (14, (1= 1)+ £(1) (23)

where the frequency w, is imaginary for the reactive mode. They found that,
except for the limiting cases of very high and very low friction, the rate of
the reaction would depend verv markedly on the assumed friction kernels
¥,;(7). [It should be kept in mind that these are related to the correlation
functions of the solvent forces, v, (1) = (F, () F(7))/KyT.] Moreover, the
mode coupling reduced the effective friction that was “felt” on the reactive
mode. This shows how important and complex may be the role played by
the solvent in determining the reaction rate.
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Another source of coupling between the reactive and the other modes may
result from the shape of the potential of the (solvent free) reacting system. A
particular case of this class was studied by Christoffel and Bowman,?® who
considered a two-dintensional potential based on that of ammonia,

V(x, )= [Yax® + ibx* + Vgexp(— ex?)] + im [c»},(x)]zy2 (24a)
with
w (%) = wy[1— hexp(— ax?)] (24b)

This has the form of a double-well oscillator coupled to a transverse harmonic
mode, The adiabatic approximation was discussed in great detail from a
number of quantum-mechanical calculations, and it was shown how the
two-dimensional problem could be reduced to a one-dimensional model with
an effective potential where the barrier top is lowered and a third well is
created at the center as more energy is pumped into the transverse mode.
From this change in the reactive potential follows a marked increase in the
reaction rate. Classical trajectory calculations were also performed to iden-
tify certain specifically quantal effects. For the higher energies, both classical
and quantum calculations give parallel resuits.

B. The Coupled Double-Well Oscillator

In this subsection we extend Christoffel and Bowman’s investigation to the
condensed phase. This is done within a classical context reminiscent of the
work of Grote and Hynes,”® and we make extensive use of both AEP and
CFP (see the first four chapters of this volume). A more detailed account is
given by Fonseca et al.*

Consider a bidimensional model potential,

V(x,y)=¢>(x)+w§5f(x)y2 (25)
where x is the reaction coordinate and y is some transverse normal mode,

¢{x) is a symmetric double-well potential modeling the chemical reaction,
and

Wepe (%) = [%‘wSJ”P(X)]VZ (26)

with

b0 == Phene - 5| (27)
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A, and r may be regarded as measures of the intensity and the range, re-
spectively, of the coupling of the transverse mode onto the reactive motion.
For Grote and Hynes’ assumption on the mode separability in the saddle re-
gion to be valid, a fairly large value of r is required. In fact, when r > a
(2a is the distance between the two minima of the reactive potential), the
effect of the deterministic coupling can be viewed as a simple upward
translation of the double-well potential on the energy axis; for » £ a, how-
ever, the reaction coordinate is driven by an effective potential which has a
smaller barrier and, in some cases, a third well, an effect already found m
Chnstoffel and Bowman’s work.

The classical motion of a stochastic particle in the potential defined by
Eqg. (25) may be described by the following set of equations:

o= —¢(x)—yo— ' {x)y*+ f(1)
i (28)

W= —dw—wgy =239 (x)+f(1)

The stochastic forces f(¢} and f’(¢) are assumed to be of the form of
Gaussian white noises and to be statistically uncorrelated; this means that
the coupling between reactive and nonreactive modes via the solvent is com-
pletely neglected. However, the noise aflecting the nonreactive mode is
transmitted into the reactive one originating the appearance of multiplica-
tive noise effects. Although the Fokker-Planck equation corresponding to the
set of Egs. (28) may be written straightforwardly, its explicit solution in-
volves some technical difficulties. In order to avoid these difficulties we shall
make a set of assumptions similar to those of Christoffel and Bowman. The
pair of variables (y,w) is assumed to be much faster than the pair {x, v); if
this condition applies, the AEP can be applied to obtain a simpler Fokker-
Planck equation depending only on the slow variables, and the CFP can be
used to determine the time evolution of the observables driven by that equa-
tion. This kind of approach allows us to determine the rate constant for the
chemical process under investigation in the following two different physical
situations:

1. System in Thermal Equilibrium. The two modes have available the
same thermal energy, and in this case, we study the whole range of
values of the friction v on the reactive mode.

2. System Being Excited. We assume that the nonreactive mode can
be continuously heated by an external source without affecting the
reactive one, thereby creating a physical situation where a canonical
equilibrium does not exist.
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In both of these physical situations we assume the nonreactive mode to
be overdamped, with the friction A so large (with respect to w;) as to allow
the set of Eqgs. (28) to be replaced by

b=—¢'(x)—yo = (x)y*+ f(1) (29)

2
y== L;\O)’—Azi»(X)er )

The AEP 1s applied to the set of Egs. (29) in order to obtain from its equiv-
alent Fokker-Planck equation,

a — i 4 i ’ 2__1?__
ol ni) = | =u s o) g+ vy

d a* 2
+y Eu+<uz>ﬁ +

d
XIP(X)@

dy

+ ‘;0[ d =y <y2>ﬁ”]}P(X,Uaysf) (30)

the one describing the time evolution of the probability distribution of the
slow vanables, o{x, v, t):

Datxony={ v+ L)y
g PN = Yax Bu¢x LEP

30 ¥(x) (%) = 75;(}*% (x)¥(x)

+'y<

20 9" Al '<x)}’“}o(x,u,r> (1)

{This result is obtained by using corrections up to the second perturbational
order; for a detailed discussion of how the perturbation parameter is de-
fined, see Chapter 1.}

It is illuminating to briefly discuss the significance and importance of each
term in Eq. (31). The first three terms are trivial, as they are nothing but a
description of the deterministic evolution in the reactive mode in the ab-
sence of coupling with the nonreactive mode; the sixth term is also trivial
and is a diffusional term corresponding to the effect of the stochastic force
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f(1r) over the reactive mode. More interesting are the remaining terms: in fact,
the fourth term is equivalent to the standard adiabatic correction to the re-
active potential found by Christoffel and Bowman and arises as a conse-
quence of the deterministic coupling of the reactive mode to the nonreactive
mode. When one applies the AEP to the set of Egs. (29), this term appears
as the first-order correction. The fifth and seventh terms appear as the sec-
ond-order correction provided by the AEP; the fifth is a nonstandard adia-
batic correction to the reactive potential, and the seventh is a multiplicative
diffusional term that transmits to the reactive mode the effect of the thermal
fluctuations acting on the nonreactive mode. It can also be proved that higher
order corrections provided by the AEP will generate the true effective poten-
tial “*feft” by the reactive mode.

Equation (31) is valid when the characteristic times of the position x and
velocity v are similar; when both v and y are assumed to be fast variables,
the AEP applied to the set of Egs. (29) leads to

2ol )= %g—[ (x)+ () (x)

<y> <y>

IR ACII At tl/( W)

<>
Yal[< )+ [wﬂ

2y’

1 3 s £y
+;5; mlﬁl(x)ti’ (x)

Rt
(“’0)

where R, = (w3/\)/y=1,/7, This equation was obtained taking into
account corrections up to the fourth order on the AEP and considering v as
a fast variable but not infinitely fast when compared to x. It must be noted
that the last term in this equation is, with respect to Eq. (31), the next non-
standard adiabatic correction to the reactive potential. It is interesting to
study how Eq. (32) behaves with y or more directly with R;; when R, as-
sumes large values, which is equivalent to taking small values of y and

() (%) [y o, 1) (32)
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therefore making the system more inertial, the fourth and seventh terms of
Eq. (32) cancel each other out, and the resulting equation is equivalent to
that obtained starting from Eq. (31) and eliminating (with the AEP) the
velocity v. When R, tends to zero, v tends to infinity, and the diffusional
limit is approached; in this limit, Eq. (32) can be rewritten as

ORI AEORIOY

<y2> Xl )+4(<y2)>¢< ()

D

L1y, ) [a.wxﬂ}c(m (3)
YR,

This same equation can be obtained from the set of Eqs. (29) assuming v
infinitely faster than x. This touches the [td-Stratonovich controversy dis-
cussed by Faetti et al. in Chapter X (note that R, is to be identified with
their parameter R~ 1). In line with their remarks, we are led to the conclu-
sion that when the system becomes inertial the Itd description is valid {see
Eq. (31)] and that when inertia is completely absent [see Eq. (33)] the
Stratonovich description is attained.

The results obtained considering that the system is thermalized can be
summarized in Fig. 4, where the chemical reaction rate k is displayed as a
function of R; ( =7,/7,). 7, was kept constant, and therefore this figure ex-
hibits the same kmd of k dependence on y (v is the friction acting on the
reactive mode) as that already discussed in Section IL.A. Note, however, that
new effects originating from the coupling between reactive and nonreactive
modes appear in this case, as will be discussed later on. When R, — 0, the
high-friction region is attained and a linear dependence of k on 1 /7 is ob-
tained, in agreement with the classical Kramers result. As R, increases, the
system becomes more inertial, and it is also interesting to note that as A,
increases, straight lines of increasing slope are obtained. This is a manifesta-
tion of the role played by inertia: the sensitivity of the reaction rate k to the
intensity of the coupling increases as the reactive system becomes more iner-
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Figure 4. Synergism of inertia and multiplicative Auctuation. Variation of the reaction rate
k throughout the whole range of values of the friction y[ R, = (wf /A)/v, and wf /A was kep?
constant]. The curves on the left-hand side were obtained using the CFP, and & was identified
with the inverse (at the origin) of the Laplace transform describing the time evelution of the
average value of the position {x). Those on the righi-hand side were obtained by the first-pas-
sage time technique, and &k was identified with the inverse of that time. The parameters were
given the values £, =2x10"", ¢ =035, r=2a and {y? )i ={r*)={w?)=10"". Atomic
units are used throughout. [Taken from T. Fonseca et al.. J. Chem. Phys.. 80, 1826 (1984} ]

tial. Above a certain value of Ry, the lines start bending down, a sign that
the intermediate friction regime is being approached (see introduction). Un-
fortunately, we had difficulty with the convergence of the CFP in this re-
gion, and therefore there is little reliance to be placed on results provided by
those computer calculations.

As R, tends to infinity, the energy-controlled regime is approached and
the important role played by the interaction between reactive and nonreac-
tive modes can be assessed by some remarks on Eq. (31). Let us consider the
case where ( y2) = 0. If y{v?) is also assumed to vanish, Eq. (31) describes
a purely deterministic process, and the overcoming of the barrier is rigor-
ously forbidden when the total energy of the reactant is lower than the bar-
rier height. However, when the coupling between reactive and nonreactive
modes is restored, the reactant undergoes the influence of the fluctuations
acting on the nonreactive mode, and this can sapply enough energy for the
reactant to overcome the barrier. Fluctuations become ineffective near the
top of the barrier, where their intensity vanishes as implied by ¢/(0}) = 0. This
means that inertia is absolutely necessarv for the barrier to be really over-
come. As a result of such a synergism between inertia and multiplicative
fluctuations, the chemical reaction can take place even when Kramers’ the-
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ory predicts vanishingly small rates. This is an interesting property, a
quantitative discussion of which requires a point of view completely differ-
ent from the one considered until now. To derive a Fokker-Planck equation
for the energy, we follow Lindenberg and Seshadri,™ who used energy and
displacement as independent variables. We define the energy as

E:%z+@(x) (342)
O(x) = o (x)+ v ()2~ [¢{x)] <” (34b)

In the absence of the additive and multiplicative stochastic forces, £ would
be a constant of motion, rigorously independent of time. Under the in-
fluence of these fluctnations, £ becomes time-dependent, but its dynamics
will certainly be very slow compared to the dynamics of the variable x, thus
allowing us to also eliminate the space variable. Starting from Eq. (31), we
rewrite it in terms of the new pair of variables, x and E, and after eliminat-
ing x with a procedure introduced by Stratonovich,*? the following final
equation is obtained:

a { a ( 2 ml z A ’(E)
5}“0(15‘.?)2’\_87}3 Y ( < > < > ;Mg%
1372 2 @(E) mi 2 2_)_\_ X(E) o
+28E2[ v{v?) = —= (E) r4 () T (E) } (E,r)
(35)
where

o(£)= [ax[E-0(x)]' (362)
x(E)=fdxxze"""'2/’z[Eﬁ®(x)]l/2 (36b)

with the integration extending over a domain that includes all values of x
for which F = ®&(x).

To evaluate the chemical reaction rate via Eq. (35), we adopt the first-
passage time method,’> identifying k with the inverse of the mean first-
passage time. The results are displayed on the right-hand side of Fig. 4 and
in Fig. 5,
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Figure 5. Varation of the reaction rate in the low-friction region, y — 0. These results

were obtained using the first-passage time technique. Parameters were given the same values as
in Fig. 4. [Taken from T, Fonseca ¢t al,, J. Chem. Phys., 80, 1826 (1984).]

The results illustrated on the right-hand side of Fig. 4 show that in this
region the increase of &k is much more sensitive to the increases in A, , than
it is in the high-friction region, thereby corroborating our statements about
the role of inertia. This trend is especially emphasized in the Emit vy - 0 and
is better seen in Fig, 5. As remarked above, the reaction rate stays finite in
this zero-friction limit, counter to Kramers' prediction.

Until now we have limited ourselves to study the thermalized system, that
in physical condition (1) cited at the very beginning of this subsection. When
we assume that the nonreactive mode may be continuously heated by an ex-
ternal source, the system ceases to be thermalized, and interesting new effects
can occur as a consequence of the coupling between reactive and nonreac-
tive modes. Returning to Eq. (32) we can guess what really happens when
w3 »?) is increased: on the one side, the deterministic effect over the reac-
tive potential increases and consists of lowering the barrier to be overcome.
However, and in addition to this effect, the intensity of the multiplicative
fluctuations is increased with respect to the intensity of the additive fluctua-
tions; this creates a gradient of temperature inside the reactant well that
pushes the reactant particles to the region near the barrier while supplying
them with energy. This effect vanishes at x = 0 (the barrier top), but due to
the presence of the additive fluctuations the reaction occurs with a velocity
that is much faster than in the absence of this effect. If we continue to in-
crease the energy of the nonreactive mode, a threshold region is attained
when the deterministic counterpart of the multiplicative diffusional term
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Figure 6. Variation of the reaction rate while increasing the energy in the nonreactive
mode. Curve 4 corresponds to results obtained when the role of inertia was completely ne-
glected. Curve B, In tumn, corresponds to results obtained when these effects were present. The
parameters were given the values Ay, = 0.5, E, =2x1077, (v1y=1x1077, R, =1, a =105,
and r=2a k,=12x10"7 is the & value when (r?) = ¢(w?). [Taken from T. Fonseca et al.,
J. Chem. Phys., 80, 1826 (1584) ]

equals the frequency corresponding to the harmonic expansion of the effec-
tive potential around the top of the barrier. In the absence of additive
fluctuations, it is well known after the work of Schenzle et al.’* % that this
threshold corresponds to centering the probability distribution at the top of
the barrier, and in chemical language we can roughly identify this with an
activation process. When the threshold is passed and we continue to pump
energy into the nonreactive mode, the probability distribution tends to be-
come still more concentrated on the top of the barrier, rendering the chemical
reaction even faster. The results obtained in this particular physical condi-
tion are displayed in Fig. 6.

Curve A was obtained using Eq. (33), that is, completely neglecting the
role of inertia; curve B was obtained using Eq. (32), where these effects are
present. The increase in the reaction rate is very clear; the threshold region
corresponds to the plateau, and the increase of & after this region is much
more marked. Once again the role of inertia 1s to speed up the chemical re-
action, and this seems to imply that the threshold condition would be at-
tained at lower values of the energy given to the nonreactive mode.
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IV. NON-MARKOVIAN EFFECTS ON THE RATE

In this section we shall explore a different kind of generalization of the
Kramers theory to take into account the problems resulting from the
breakdown of the time-scale separation between the reactive mode and its
thermal bath. This problem may also be found in the multimodal theories in
Section 11 when the nonreactive modes are not much faster than the motion
along the reaction coordinate.

Computer simulations of the molecular dynamics of the liquid state
(see also Chapter V1) clearly show that the correlation function of the veloc-
ity variable is not exponential; rather it usually exhibits a sort of damped
oscillatory behavior. This means that the Markovian assumption is often in-
valid. This makes it necessary, when studying a chemical reaction in a liquid
phase, to replace the standard Kramers condition [see Eq. (4b)] with a more
realistic correlation function having a finite lifetime. Recall the rate expres-
sion obtained by Kramers for moderate to high frictions, Eq. (6). This may
be cast into the form &k = ko f(w,, ¥), where kqr, given by Eq. (7), is
essentially an equilibrium property depending on the thermodynamic equi-
librium inside the well. As a canonical equilibrium property, it is not affected
by whether or not the system is Markovian. The calculation of the factor
flw,,v) depends, however, on the dynamics of the system and will thus be
modified when non-Markovian behavior is allowed for.

Another problem of interest concerns the effect of external radiation fields.
In the overdamped regime this will be shown to be reminiscent of the effect
of the nonreactive modes. These problems will be the major topics of the
present sectiomn.

This section is organized as follows: in subsection A the approaches based
on the assumption of heat bath statistical equilibrium and those which use
the generalized Langevin equation are reviewed for the case of a bounded
one-dimensional Brownian particle. A detailed analysis of the activation dy-
namics in both schemes is carried out by adopting AEP and CFP tech-
nigues. In subsection B we shall consider a case where the non-Markovian
character of the variable velocity stems from the finite duration of the
coherence time of the light used to activate the chemical reaction process it-
self.

36-39

A. Noise-Activated Escape Rate in the Presence of Memory Effects

To discuss the idea of noise-activated reactions we begin by noting that
the random forces which occur in the Langevin equation related with the
process under investigation may have quite different origins. In an ordinary
microscopic derivation of a Langevin equation (or the corresponding
Fokker-Planck equation), the random term is interpreted as associated with
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the thermal fluctuations of the system. This thermal or internal noise scales
with the size of the system (except near instability points).*~* A different
interpretation of such a contribution to a Langevin equation is necessary,
however, when this is thought to model what can be defined as an external
noise. In this latter case, one considers a system which experiences fluctua-
tions that are not “self-criginating.” These fluctuations can be due to a
fluctuating environment or can be the result of an externally applied ran-
dom force. The mathematical modeling of these fluctuations is done by con-
sidering a determmnistic equation appropriate in the absence of external
fluctuations and then considering the external parameter which undergoes
fluctuations to be a stochastic variable. The noise term of the stochastic dif-
ferential equation so obtained is usually multiplicative in nature, that is, it
depends on the instantaneous value of the variable of the system. It does not
scale with the system size and is not necessarily small. We can regard the
external noise as an external force field which drives the system, always
maintaining its statistical equilibrium. Among the experimental situations in
the presence of external noises so far considered, the example of illuminated
chemical reactions*® may be of particular interest for our readers.

In Chapters I, X, and X1 it is stressed that the “ microscopic” derivation
of equations such as some of those used here should be discussed carefully.
This 1s to avoid some ambiguous features of a purely phenomenological
treatment. However, as these are widely used in the literature of stochastic
processes, we shall show how to approach the problem of their sofution while
avoiding those difficulties by using a more rigorously founded “microscopic”
derivation (see Chapters X and X1i).

1. Examples of Non- Markovian External Noises

Let us focus on the one-dimensional dynamics of an order parameter x
exhibiting bistability, that is,

X=f(x,a) (37)

where a denotes an external control parameter. The flow f(x,a) is assumed
to possess three real roots { x;, x,, x, }. We choose x; < x,, where x; and x,
denote locally stable steady states and x, is an intermediate, locally un-
stable, steady state. In the presence of a fluctuating control parameter a, the
deterministic flow in Eq. (37) should be replaced by a stochastic one:

x=f(x.a)+g(x)é(s) (38)

where the multiplicative noise (state-dependent coupling) represents the lin-
ear coupling of a to the order parameter x in the dynamical flow, Eq. (37).
A common example of Eq. (38) is provided by the Smoluchowski approxi-
mation of the random walk of a Brownian particle bounded into a symmet-
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rical double-well potential,

V(x)=——— 4 —r (39)

In such a case g(x) is assumed to be 1, x, =0, and x, , = +(a /b))~

The problem may be formulated as follows. Given random noises £(/)
with different correlation parameters 7, and 7, but possessing identical
spectral densities S, (w = 0) at zero frequency, that is,

$:(0) = [(6(D&(0) di = [(&()6,(0)dr=2D  (40)

what is the relationship between the corresponding activation rates of the
metastable states?

Hanggi and Riseborough® carried out an exact calculation of the activa-
tion rates for the bistable flow of Eq. (38) for the case when the noise of the
control parameter can be modeled by a telegraphic noise of vanishing mean,

§(r)=d(-1)"" (41a)

it s

(e()e(5)) = 7 exp| = 1) (410)

T

where n(t) is a Poisson counting process with parameter (27)~' and o
denotes a random step with density

L S It T

We may now elaborate on the problem posed above: the system with a
smaller correlation time 7 is subject to random forces with larger amplitude
(see Fig. 7), and this might lead to the conclusion that the rate was enhanced.

11107 R—

t Figure 7. Sketch of possible realizations of a

telegraphic noise, £(r}, for differing correlatior times
e 7, Eq. (41). The soligd curve is for =, and the dashed
curve for m, where », < r. {Taken from P. Hanggi
and P. Riseborough, Phys. Rev., A27, 3329 {1983)]
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However, the time interval over which the force is constant decreases; since
the random force changes sign more rapidly, one might now expect that the
system did not have enough time to reach the point of instability, and con-
sequently the rate would be suppressed for a smaller correlation time. Thus,
it is not obvious a priori which of the two random forces, £,(#) or £,(z), yields
a smaller rate, that is, a larger escape time.

The analysis made in ref. 44 is based on the discussion of the related ex-
act non-Markovian master equation*™*® and allows us to conclude that when
the noise intensity S;(0), Eq. (40), is constant the rates are exponentially en-
hanced with decreasing correlation time 7 and this is independent of the
specific form of the nonlinear bistable flow f(x,a) and also of whether the
random noise is additive or multiplicative. [The only condition imposed is
g(x)# 0 in {x;,x, x5 }.]

An important property of the telegraphic noise, Eq. (41), is the approach
to a Gaussian white noise in the limit 7 -» 0.4 With

1
im —e /7=
-,-h—-;rri) ‘Te 6(1)

Eg. (41) reduces te
(&(1)&(s)y=2D8(r—s) (43}

From now on we consider the stochastic differential equation (38) with £(¢)
a random force associated with a zero-mean Gaussian process and an auto-
correlation function given by Eg. {41). This system has been thoroughly in-
vestigated by Sancho et al. ¥~ The use of such Gaussian noises is justified
by the central limit theorem.''™* For a Gaussian noise with exponential
autocorrelation, Eqg. (41), the so-called Ornstein-Uhlenbeck noise, one is
unable to derive exact expressions for activation rates.**®3%-3! In ref, 50 an
approximate Fokker-Planck equation is obtained for the probability distri-
bution of the variable x by applying functional methods. These methods
provide an alternative to the more often used cumulant techniques**-*>** and
may be shown to lead to consistent results.*”*® The same approximate
Fokker-Planck equation, however, can be recovered with the AEP tech-
nique. The AEP can be applied by introducing an equivalent formulation of
the process under investigation, Eq. {38):

X=f{x.a)+g(x)¢

44
f=—Lean(r) o

The exact equivalence of these formulations may be proved,> for the case
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where:

1. x{r)is a white Gaussian noise with
2D
(n(t))=0  and <n(1)n(5)>=?8(f—5) (45)

2. A fluctuation-dissipation relationship for the auxiliary variable £ is
understood, and it is initially prepared at its Gaussian equilibrium
with

b

(£0) = ()= (46)

The perturbation reduction of the corresponding Markovian Fokker-Planck
equation for the two-variable process (x(7), (1)) to an approximate one in
x(t) has been carried out in Section V.A of Chapter I1. For brevity we re-
port only the approximate time-evolution equation for o(x, 1) up to order
o,

ol ={ = o (xa) Dhe(x) 3= [g(x) M) olx. 1)
(472)
where
M(x) = /()5 (x)~ [ (x)g(x) (47b)

where the prime denotes the derivative. [The reader can find a detailed dis-
cussion of some technical properties of Eg. (47) in Chapter I1.]

The problem we are addressing now is the same one posed in ref. 44 for a
case of a non-Markovian telegraphic noise: Given Gaussian noises with dif-
ferent autocorrelation times 7, and 7, but identical intensities 2 D, Eq. (40),
which of them will provide a smaller rate (larger escape time)? Since de-
tailed balance does not hold for Eq. (44), the standard methods''®2% fajl
in evaluating the activation rate of the non-Markovian process under inves-
tigation, and the more general method of refs. 56 and 57 is rather cumber-
some because the stationary probability o,,{x, £) should first be determined
perturbatively. If T denotes the mean first passage time*>* to reach the
barrier top, the activation rate can be estimated as

K=3T" (48)

b
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where the factor 1 takes into account that the random walker has equal

chance to either continue to the adjacent stable state or return to the old one.
Without loss of generality, we consider the particular case of the
Smoluchowski approximation of the random walk of a Brownian particle
bound into a symmetrical double-well potential, that is,

flx,a)=V"(x) and g(x)=1

where I"(x) is given in Eq. (39). The chemical meaning of this model has been
discussed at length in the preceding sections. If x = - o0 is a natural reflect-
ing boundary and x = x_ = 0 an absorbing state, one finds,”>*® for the mean
first passage time T(x) of a walker which started out at x(0)=x_ <0,

= 0 d)’ 7 a, z zZ
)= o ypoy L) (49)

¢, (x) denotes the stationary probability of the approximate Fokker-Planck
equation, Eq. (47). D(x) is the corresponding diffusion coefficient, that is,
D{x)= D(] — tM{x})). With the assumptions of (1) small enough autocorre-
lation time 7 and (2) weak noise such that D < a’/b, we can evaluate T(x)
by applying the method of steepest descent to Eq. (49). From Egs. (47) and
{39), we obtain

o )
with
A¢=jox1715g(’;)’a)dy=%(1—szf—z)+o(r3) (s1)

Since Eq. (49) takes into account only the term of order D, the term of order
72 in Eq. (51) is meaningless and the term linear in 7 in A¢ vanishes ex-
actly. For 7 =0, our result equals the well-known Smoluchowski rate.!*?
The main conclusion we can draw is that the activation rates for non-
Markovian processes like Eq. (44) decrease as + increases; the exact result
of ref. 44 can thus be extended to the case of Gaussian random forces of
finite correlation time as well. However, if we take Eq. (50} seriously, we ob-
tain an Arrhenius factor, exp(Ad /D), of T(x) which does not exhibit a de-
pendence on 7. This is in contrast to the result found for telegraphic noises,
where the Arrhenius factor increases with increasing autocorrelation time 7
{see ref. 44). The result of a numerical simulation for T(x) based on the bi-
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4%

Figure 8. A®, defined in Eq. (51), versus the
3l noise autocorrelation time 7. The computer simu-
’ . L . lation of Eqgs. (44) has been carried out by apply-
f ' ing the numerical ajgorithm of ref. 350 with an
integration step of 0.01. The values of the param-
ctersare ¢ =b=1, D =0.1 (@) and D =0.05 (M).
T is the average over 1000 first passage times
considering the initial conditions (46) for £ and
¢(x,0)=8(x ~ x;) for x. The maximum error
bar in our numerical simulation is estirnated to be
2 about 10%. The arrow denotes the white neise
limit A {7 = 0}). [Taken from P. Hanggi et al., Z.
.05 10 z Phys. B56, 333 (1985).]

stable flow 1s given in Fig. 8. In contrast with our prediction in Eq. (50}, A¢
increases with increasing autocorrelation time 7. The increase is propor-
tional to the first order in r and is not dependent on the small noise parame-
ter D. The origin of the disagreement must be ascribed to the expansion in a
Taylor series of exp{ Z, s} appearing in the memory kernel of Eq. (3.15) of
Chapter 1. This expansion is proven®® virtually equivalent to considering
only %, (see Chapter II} as being the unperturbed part of the total operator
. When %, is replaced with an equivalent linear operator so as to avoid
this perturbative expansion, then a complete agreement with the predictions
of the master equation method®? is recovered.®®*!

2. Chemical Reactions Driven by Bona Fide Non- Markovian
Fluctuation - Dissipation Processes

When the chemical reaction process takes place in condensed phase (for
example, in a liquid), a reliable description of it seems to be achieved*® sim-
ply by replacing Egs. (3) with

x=7v (52a)

l:'="j—V'(x)—fqu(t—T)U(T)d'?‘+f(t) (52b)
M 0
where the kernel ¢(r) and the stochastic force are related to each other via

() e(z) =(f(0) /(1)) (53)

This takes into account the fact that the stochastic force f(¢) can have a finite
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correlation time, for example,

@(!)=Tlem("::~) (54)

[ <

In the absence of the external potential ¥, Egs. (52} can be given a rigor-
ous derivation from a microscopic Liouville equation (see Chapter I). We
make the naive assumption that when an external potential driving the reac-
tion coordinate is present, the two contributions {the deterministic motion
resulting from the external potential and the fluctuation-dissipation process
described by the standard generalized Langevin equation) can simply be
added to each other.

A more realistic and more general treatment would presumably lead to a
set of equations like Egs. (52), with the potential ¥(x) fluctuating as a con-
sequence of couplings with nonreactive modes (see Section III). For the sake
of simplicity, we study separately the two different aspects. While Section III
was devoted to peinting out the role of multiplicative fluctuations (derived
from nonlinear microscopic Liouvillians) in the presence of additive white
noise, this subsection is focused on the effects of a non-Markovian fluctua-
tion-dissipation process (with a time convolution term provided by a rigor-
ous derivation from a hypothetical microscopic Liouvillian) in the presence
of a time-independent external potential.

A more general expression for ¢(7) can be derived from the continued
fraction expansion, ref.®?

. Al
¢(z)= — (55)
A%
A
T+ A+ A

AZ
+ n
z+ (;‘)n(z}

defining its Laplace transform. In the explicit calculations presented in this
subsection, we shall limit ourselves to considering the case of Eq. (54) which
corresponds to truncating Eq. (55) at the first order (A% = 0) while assuming
Ay=1/7. and A]=1y/7. A truly rigorous derivation from a microscopic
Liouvillian would lead to A; =0 unless coherent oscillatory motions have to
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be simulated (in that case A, would be purely imaginary numbers). The chain
of Eq. (55) is often truncated at the nth order by assuming §,(z) == v,. When
this is done, the dissipative term v, simulates the infinite remainder of the
chain. In most cases (see, for example, Grote and Hynes®™**7) ¢(7) is given
a certain analytical expression without taking into account the formal con-
straints provided by the derivation from a hypothetical microscopic Liouvil-
lian. In such a case the parameters A, can be real numbers. If we adopt the
basic ideas of the RMT (which in the present linear case to which the stan-
dard generalized Langevin equation applies is virtually equivalent to the
methods described by Ferrario and Grigolini®), we find that the set of Egs.
(52) is equivalent to

X=v (56a)
p=—V"{x)+ 4, (56b)
Ap=—Ap— MNA + A, + §(1) (56¢)
Ay=—A3A — A, A4, + A+ £,(¢) (56d)
A) = =84, - N4, +£,(0) (56n)

The random forces £,(1)...., §,(¢) are Gaussian white noises of zero mean
and correlations

<$i(t)$j(s)>=28inBTAi(A21"'A%)S(t_s) (57)

These forces are introduced® so as to supplement the frictions A, with the
corresponding noise term and guarantee the attainment of a canonical equi-
librium. The Fokker-Planck equation associated with the set of Egs. (56) can
be written as

D e 2 0
o0 = 5D\ U@ 4

I

o(g.t)  (38)

¥

where a summation over repeated indices is implicit, p,»=1,...,n +2, and
G=x,0,Aq,.... 4,. The generalized potential U 13

_Vx) 0 A 42
Ulg)= iv; +2$2A21+”'+2A21---A2,, {59)
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and the kinetic matrix D,, is

0 -1 0 0 e 0
1 0 —A 0 e 0
0 A AN - AN
Pu=KsTlg o aa
L o A
0 AL AL AT |
(60)

The equilibrium stationary solution of Eq. (58) is

palq) = NeXP[ -%(:7)} (61)

where N is a normalization constant.

As mentioned above, in the explicit calculations of this subsection we shall
consider A, =0, A, #0, A% =0. This is the simplest case satisfying the re-
quirements of a rigorous derivation from & microscopic Liouvillian. Of
course, for the non-Markovian nature of the variable velocity v to result in
observable effects, the effective friction term

va= | [TCOem)a]

cannot be infinitely large compared with the frequency w,, the harmonic ap-
proximation around the bottom of the reactant well. This means that
inertial effects cannot be disregarded. An interesting discussion of the in-
fluence of inertia on the escape over the potential barrier (variational in na-
ture) can be found in a paper by Larson and Kostin.??" Their results are valid
in the limit of white noise and provide a reliable check of our approach.
Furthermore, in an earlier paper,*** the same authors improved the Kramers
result for the diffusional case by evaluating corrections to the linearization
of the Brownian motion within the barrier region. Such an assumption is
usually #2.37:6% at the basis of any approximate analytical calculation of the
activation rates. However, as shown by Fonseca et al., when using the CFP
this approximation can be avoided. Therefore we shall apply the CFP in the
most advanced form reviewed by Grosso and Pastori in Chapter 111 to the
Fokker-Planck equation [Eq. (58)] with » =1 and A, # 0, which hopefully
should account also for the corrections of ref. 22b.
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226

In Larson and Kostin®*® notation we change variables as follows:

X — xd
v —pyi

(62)

;= _YZ&Z

where

: a\i/? A?
a=(—) =22 g=-1 (63)
The reduced Fokker-Planck equation now reads

d

a _ d 3 d ,
aro(x,u,Ai,z‘) = l:— o0 +4c(x’— x) ol

D a4 P A (64)
g4, " T aa, T e |70

+ av

where
=2 =2
(I—Yaa_ (X'=A1Y2*a"""”
q q
, = (65)
C=70 VO_ ZE

Let us note that in these dimensionless variables ¢ plays the role of barrier
height, while v = A} /A, is the effective friction constant. This can be shown
by following the heuristic argument of Section I of Chapter 11. Let us as-
sume that A, relaxes so fast that 4,, Eq. (56c), is approximately zero; the
system of Eqs. (3) will be recovered provided vy = A} /A,. Moreover, in Sec-
tion V.C of Chapter II it is shown that the AEP corrections to the trivial
Markovian approximation of Bq. (58), n =1, are perturbation terms in the
parameter

172

-2

28,
o Y

(66)

In other words, if we keep v fixed and vary g, we explore situations with
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different “memory strength.” Following the prescription of ref. 66, we de-
fine the escape time from the reactant well to the product well as the area
below the curve {x(7))/{x((). For fairly high values of the barrier ¢, this
curve 1s mostly one exponential throughout the entire time range but for a
narrow region close to t = 0. This fast relaxation depends significantly on the
starting point distsibution, o(x,0).1% Let us assume ¢(x,0) to be given by a
delta of Dirac placed at the bottom of one well. This choice may enhance
the effect of the short time relaxation on our definition of escape time,

H

15 = ©(0) (67)
where &(0) is the Laplace transform of (x(¢)>/{x(0)) at zero frequency.
However, for large enough values of ¢, kK = 7! can be relied on as a sensi-
ble estimate of the activation rate of the process.

Figure 9 describes the results obtained by applying the CFP. The most
remarkable feature of these results, is the increase in the rate k as the
parameter g increases. A further remarkable finding is that for g — 0
(Markovian limit) the accurate value of Larson and Kostin®® is attained
within a precision of a few percent.

Figure 9 is the main result of the present discussion. However, we can at-
tempt to arrive at an analytical expression for the rate of escape over the

kxEOZ * éé
45 $
t }
0, ¢ ¢
%
4 f
35 LETY ié
14
30 i#
Y

2 6 10 14 18 22 26 ¥

Figure 9. The escape rate & {see Eq. (67)] as a function of y = 4/g% = &/ /a when ¢=5.
The approach used to calculate & is the “exact” one described in Chapter II of this volume.
The values of the parameter « are as follows: (O) a=10, (M) a=12, and (®) a=20. {Taken
from F. Marcheron: and P. Grigolini, J. Chem. Phys., 78, 6287 (1983).]
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barrier by using the generalization of Kramers’ ideas to systems with many
variables. 2035676469 1 6t 15 come back to the multidimensional potential
U(g), Eq. (59): It has two metastable minima at g, , = (x,,,0,---,0) and a
saddle point g, = (x,,1, - - - .0). This generalization essentially consists in the
following. One first locks for a quasi-stationary state of Eq. (58). In this state
there exists a nonvanishing probability current from one metastable mini-
mum to the other. The nonequilibrium stationary state and the probability
current are calculated by linearizing around the saddle point g,. The escape
rate is given by the flux of probability current through a surface containing
the point g,. The calculation of k has been discussed in detail by Langer?®
for a general Fokker-Planck equation with the form of Eq. (58). The final

result is
12
|k det M! ( AU)
Lo Ly et exp] — 68a

2w(1detM0; KT (65

where
82U (Y
AU=U(g,)-U M= 55 My, =
(40)—Ulqy) » 3,94, o dq.9q,

{68b)
Note that det M© is taken in absolute value in Eq. (68). This corresponds to
replacing the negative eigenvalue M|, which indicates the single direction
of instability, by its absolute value. The dvnamical factor « is defined as the
negative eigenvalue of the matrix M%D/K,T. It is important to note that
the dynamics of the system only enters into Eq. (68) through «. This factor
depends on the kinetic coefficients D,,, Eq. (60), while the remaining terms
in Eq. (68) are completely determined by the potential U of the stationary
solution. For the case under study, Eqs. (58) and (59), Eq. (63) reduces to

ur(x) 7’ U(x,) = U(x,)
'U”(xo)i) EXP[— KT (69)

= sl

27

In this particular case,

0 —-U"(xz) G
1 0 -AT 0
0 0 1 A, AL
v S B
K;T |0 0 1 A,
.............................. i
0 1 A, ]
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The eigenvalues of this matrix admit a continued fraction expansion

U"(x,) A} AL
C—kF e —KFAF - —KFA, (71)

I
=
Il

From this expression it is clear that k is the negative solution of the implicit
relation

U
Sy — (72)

Equation (72) coincides with the analytical result of Grote and Hynes.*” In
the Markovian limit, $(r) = 2y8(¢),

2 1/2
Y Y ,,
K—Eﬁxmu(%ﬂ

and we recover the Kramers result, Eq. (6).

The whole effect of the non-Markovian dynamics is contained in k. As
long as the fluctuation-dissipation relation, Eq. (37), is satisfied, the ex-
istence of the non-Markovian kernel modifies the dynamics but not the equi-
librium solution, Eq. (61), and, on the other hand, a change in the dynamics
of the system only changes the value of « in Eq. (69). The general form of
the non-Markovian effects on « have also been obtained by Hanggi and
Mojtabai.®® Their elegant derivation is based on a non-Markovian master
equation first established by Adelman™ for the probability density of the
process which is solved by using the main basic assumption of Kramers. Their
results are again proven to agree with those of Grote and Hynes.*’

As a particular example of Eq. (72) we can consider the case of an
Ornstein-Uhlenbeck noise,’" where n =1, A\; = 1."! and A3 =y/7.. In this
case x 15 the negative solution of

— k2= A=A+ U (x| e+ U(x)A, =0 (73)

The Markovian limit corresponds to A, — oo, By solving Eq. (73) to the
lowest order in A[! it is easy to see that in this case the non-Markovian dy-
namics leads to an enhancement of the decay rate k. In the notation of ref.
22b, an approximate expression for Eq. (69) may then be written as

k=k(g*0)[1*‘if(1—~%;)] (74)
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where k(g = 0) is the Kramers escape rate (in the diffusional limit) and g is
the parameter of “memory strength” defined in Eq. (66). The same result has
been obtained in ref. 66 by adopting the variational method of ref. 22b.
Equation (74) is the analytical counterpart of the exact results reported in
Fig. 9: As shown in ref. 66, the agreement with numerical results is only
qualitative. Before concluding this subsection, we would like to mention a
further way to explore the effects of non-Markovian statistics on the rate of
escape from a well. This consists in applying the AEP of Chapter II to the
Fokker-Planck equation, Eq. (58), so as to build up a reduced diffusion-like
equation for the variable x alone. As the chance of proper simulating these
effects relies on a faithful simulation of inertia, we quote here the interesting
result of Gardiner,” which shows that this actually happens. He considered
a corrected Smoluchowski equation which is a particular case of the more
general reduced equation mentioned above. By using a first-passage time
technique he could explore the whole region going from low- to high-friction
regime and obtained results in agreement with those of a computer simula-
tion. It therefore seems possible to explore also the effects of a non-white
noise by applying the same procedure to the more general reduced equation
mentioned above.

B. Activation of a Chemical Reaction Process via
Electromagnetic Excitation

The subject of this subsection is closely related to that of Section 111 In-
deed, we shall show that the effect of a radiation field on an overdamped
reacting system produces activated states which are reminiscent and for-
mally similar to those arrived at by the coupling between reactive and non-
reactive modes.

Hinggi’* studied the model potential

L dl) . b,
P{x)= goxt A gx (75)
where the frequency d(¢} is a stochastic parameter such as
d(t)=d+n(t) (76)

and 7(¢) is a Gaussian white noise. The main result of this study is that the
presence of a multiplicative coupling with the heat bath makes the activa-
tion rate increase with respect to that in the Kramers model, where a purely
additive noise is considered. In the following we give a detailed discussion
of the interplay of additive and multiplicative noises on the basis of a phe-
nomenological model for a photoactivated chemical reaction. De Kepper and
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Horsthemke*® have already used a radiation field as a source of noise. As in
refs. 73 and 74, we model the action of a radiation field A(¢) with a finite
coherence time 1 /A, in terms of the following set of stochastic differential
eguations:

b= V(x)-yo+ E(x)A(0) 4 £(1) (77)

where f(1) is a Gaussian white noise with zero mean and autocorrelation
function

(f{1)F(0)) =2D58(s)=2vy(v")8(¢) (78)

F{x) is assumed to be the usual symmetrical double-well potential [V(x) =
— 8x%/2+ Bx*/4}; the third term on the right-hand side of Eq. (77) is the
coupling between the Brownian particle and the external radiation field,
which is characterized through its autocorrelation function

{R(eYh(0)) =2{w?)exp(— As)cos wr (79)

Equation (79) has the physical meaning that the coherence of the electro-
magnetic field is lost in a time 1 /A, Models of this kind are frequently used
to depict laser light.” The electrical dipole of the system interacting with the
external field is assumed to have the simple form

E(x)=p(x—x,)" (80}

In order to relate the system of Egs. (77) to a ime-independent Fokker-
Planck formalism, we replace that set of stochastic differential equations with
the equivalent one,

b=V {x)—yo+ E(x)(y+2z)+ (1)
b= iay—Ay+n, (1) (81)

f=jwz—Az+7.(1)

The AEP allows us to simplify the discussion of this model provided that we
can choose a (slowly relaxing) variable of interest. For that reason we shall
focus on an electromagnetic field of frequency comparable to the frequency



THE THEORY OF CHEMICAL REACTION RATES 427

corresponding to the harmonic expansion of the reactant well, w,. The dif-
fusional assumption implies y 3 2w,. Furthermore, we shall assume that our
experimental apparatus allows us to observe only long-time regions corre-
sponding to ¢ 2 v/wj so that the dynamics induced by the radiation field
belongs to the short-time region if A > 2w,. When it is further assumed that
the stochastic forces n,(¢) and n,(z) are independent of each other and
related to the field intensity by

{n,(1)m,(0))=2D3(¢)

(82)
(n.(1)n.(0)) =2D.5(1)

where
D,=D*=(A+iw){w?)=¢w?) (83)

the current problem takes a form resembling that of the model studied in
Section V.C of Chapter II. Let us focus our attention on the case y > A, that
is, one in which non-Markovian effects due to light statistics are more rele-
vant than inertial corrections. The perturbation expansion of Eq. (5.31) of
Chapter 1I can then be rewritten as

d 14,
5 0(x, 1) = {;E;J(XH

(w?)

" Ey+¢&)y 5‘x

(w?) o

Vy+) o )

E(x )6 (x)+ce.lo{x,t) {84)

where j(x)={v?)d/dx +V'(x) and vy~ 3 or higher order terms have been
neglected.

Let us study in detail the case where the particle dipole E(x), Eq. (80}, is
given by

E{x)=px (83)
Equation (84) can be put in a simpler form:

82
%o(x,t)={— T~ dgxr b )+DT+Q3 } (x.1)

(86)
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where

D= " (87)
A
d==  b=% (88)
__2{wh)
Q= YIA(1+ 0¥/ A?) (89)
dy=d-Q 1+A/y+ 0 /Ay (90)

(L+ A /v Y+ /Ny

As a result of AEP, the initial system of the set of Egs. (81) is reduced to the
equation describing the diffusional motion of a Brownian particle which
undergoes the action of an additive and a multiplicative noise (with intensi-
ties D and Q, respectively) in the presence of a renormalized bounding
potential, Eq. (90). The Markovian limit corresponds to A — co. If we take
such a limit at a fixed value of v, d, = d, and the case studied by Hanggi”
is recovered. Of course, having neglected the condition A <y we have
reduced the problem to a trivial diffusional (lowest-order) approximation.

The escape rate for the process described by the Fokker-Planck equation,
Eq. (86), has been studied in ref. 73. We choose @(t) = {x(2)}/{x(0)) as
the observable of interest, {x{o0)) =0. Then we apply the approach de-
scribed in the Section IV.A to evaluate the escape rate k as the area below
the curve ®(1): k = ®(0)~!, where ®(0) is the Laplace transform of ®(r) at
zero frequency. To make the convergence of the computer calculations fast-
er, the CFP algorithm has been applied by taking

d
o(x,0) =N|x|“"@”Qexp(” %"2) GV

as the initial distribution (N is a normalization constant). This is the sta-
tionary distribution in the absence of additive noise. The most remarkable
results are reported in Fig. 10. When Q =0, k exactly coincides with the
corresponding result of Larson and Kostin.”® For small values of O, k is a
linear function of Q. A first change in the slope of k£(Q) is exhibited at those
values of @ corresponding to the onset of the continuum in the spectrum of
the purely multiplicative Fokker-Planck operator,™?* that is, the Fokker-
Planck operator of Eq. (51) with D = 0. A second is found when the threshold
of the phase transition (see ref, 34) is reached. The main conclusion is that
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k .
100

¢ Figure 10. k as a function of the
: ! intensity of the muitiplicative noise. &
10 PR is defined as $(0)" ! with ®(s)=
Lt {x(£))/{x(0)). The two arrows on the left
g " * wdg4 denote the point where the discrete branch
1 : H edgl= 5 of the eigenvalue spectrum disappears (see
.- Schenzle and Brand**). The two arrows on
st { } the right denote the phase transition
s . . threshold. [Taken from S. Faetti et al., Z.

0 5 10 15 20 Q@ Phys., BAT, 353 (1982).]

the cooperative presence of a multiplicative noise produces a marked in-
crease of the thermal (i.e., additive) activation rate.

The question raised at the beginning of the present section is still un-
answered. A simple argument, however, can provide information on the role
played by non-Markovian dynamics in the problem under investigation.
When A <00, d,, <d, so that at a fixed value of Q the rate of escape will be
larger than in the Markovian limit, making A(Q, d;) a decreasing function
of d, (see Fig. 10). We are in the presence of a striking effect due to the
synergism of different—and statistically unrelated—noise sources, nonlin-
earity and inertia. We showed in the preceding subsection that the effect of
an external additive noise, non-Markovian in its nature, would be to lessen
the activation rate of the process with respect to the Markovian case first
studied by Kramers. Furthermore, it has been found,’® by means of a
numerical simulation, that the non-Markovian dynamics affects the diffu-
sional relaxation in the presence of external multiplicative noises in a similar
way. Contrary to these findings, our major conclusion in this subsection is
that when both additive and multiplicative external noises act on the sys-
tem, a finite correlation time of the multiplicative noise determines an in-
crease of the activation rate. This subject is discussed further in Chapter X.

V. DISCUSSION AND GENERAL PERSPECTIVE

In order to get a satisfactory perspective of the state of the art in the
limited sector of the theory of chemical reactions which is explored in this
chapter, we shall devote this final section to the following basic aspects:

1. The relation between current theories and selected experiments and
discussion of the extent to which the details of theoretical predictions
have been confirmed so far.
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2. The relation between chemical reaction rate theories and some recent
advances in the field of nonequilibrium statistical thermodynarmnics.

A. Supporting Experimental Evidence

Experimental confirmation of the theoretical predictions discussed in this
chapter is still far from completely satisfactory. It may be expected that in
the near future fresh experimental results will come to motivate new devel-
opments in the theory and greatly improve the understanding of the actual
experimental conditions where the theoretically predicted effects are rele-
vant. The aim of this subsection is not that of giving a comprehensive review
of the already very sizable mass of relevant experimental studies (for more
comprehensive reviews see refs. 7b and 76); we shall draw attention to cer-
tain difficulties in the interpretation of experimental results in relation to the
theory developed here and refer to a few representative pieces of experimen-
tal work.

One difficulty of connecting theory and experiment arises from the fact
that the relation between the microscopic coupling parameter between the
reaction coordinate and the medium (the friction coefficient) and the macro-
scopic observables is not well understood. The usual rule of thumb follows
Stokes’s law and states that the friction is proportional to the macroscopic
bulk viscosity; however, this may be grossly incorrect. It would be advanta-
geous to use a local viscosity obtained from the measurement of some sort
of molecular relaxation phenomenon, but this is not always available.

An alternative strategy is to look at the activation volumes V' * related to
the pressure dependence of the rate constant by the thermodynamic relation

V*-W—KBT(aink)
T

7P (92)
The volume of activation should be formed by an equilibrium (quasi-ther-
modynamic) part related to the TST rate, Vigy, plus an extra part, V3,
originating from the dynamic interaction with the solvent. Vi may be
estimated with reasonable assumptions about the transition-state conforma-
tion, and thus access is gained to V3, that is, the pressure dependence of
k /k1¢r. This pressure dependence is felt through the friction,

d K dy
i il r
v KBT[ + Km]( 3P)T (93)

This method was proposed by Montgomery, Chandler, and Berne,” who
suggested that (dy/dP), could be estimated from the equation of state of
the solvent, together with a hard-sphere collision expression, and thus the
friction dependence of k /k gy could be assessed.
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One would like to know what experimental conditions lead to the energy
transfer controlled regime or to the diffusive regime and whether the plateau
of transition between these two regimes approaches the TST rate. The
experimental evidence to answer this sort of question is still very fragmen-
tary. The first series of very interesting experiments appearing to cover the
whole range of friction-dependent kinetic regimes has only very recently been
performed. Hasha, Eguchi, and Jonas” did a high-pressure NMR study of
the conformational isomerization of cyclohexane in several solvents so as to
cover a viscosity range of about 50 times. They found a clear transition from
the rate-increasing low-friction regime to the rate-decreasing high-friction
region, but this decrease does not exceed 7.5% of the maximum for a fric-
tion 10 times higher.

Fleming et al.,”® in a series of studies of the solvent viscosity dependence
of the rate of isomerization of several organic molecules (e.g., diphenyl-
butadiene) in alkane and alcohel solvents, found a similar deviation: For the
higher viscosities, the observed rate is lower than that predicted by a fitted
Kramers expression. This effect has been explained as coming from the
non-Markovian nature of the coupling to the heat bath by Velsko, Waldek,
and Fleming;”® by Bagchi and Oxtoby,” using Grote and Hynes?® for-
malism; and also by Carmeli and Nitzan®®® within their generalized theory.

Other reactions have been studied that appear to also require considera-
tion of non-Markovian effects. For example, in a recent study of the photo-
isomerization of rrans-stilbene and frans-1,1-biindanylidene, Rothenberger,
Negus, and Hochstrasser® found deviations from the Kramers rate in the
case of rrans-stilbene. These discrepancies were tentatively related to
the larger flexibility of this molecule but appeared to be well simulated by
the non-Markovian theory of Grote and Hynes. 2

The fitting of the theoretical models to experimental data does normally
require adjustment of the frequency parameters (w, w,) related to the
molecular potential, since the latter is frequently unknown. It has been noted
by several authors®®® that the values obtained appeared to be unrealistic,
which sheds doubt as to the validity of the interpretation given to the data.

An explanation of the enhancement and other anomalies of the catalytic
reaction rates on metals and certain insulators associated with the large
fluctuations of the internal degrees of freedom that occur near a phase tran-
sition or by alloying has been attempted by d’Agliano, Schaich, Kumar, and
Suhl® within the framework of stochastic theories.

To sum up the current position of the experimental evidence on the
viscosity effect on condensed phase reaction rates, we may say that the most
commonly observed effect is the inverse proportionality associated with the
diffusive (high-friction) regime. In some cases, deviations are observed for
lower viscosities which fit well with Kramers intermediate friction regime
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predictions. (See, for example, the analysis made by McCaskill and Gilbert™
of data of Shank et al.® for the optically induced conformational changes in
1, I’-binaphthyl in several solvents.) Furthermore, there is now enough
experimental evidence to show that in more particular conditions the energy
transfer controlled (very low friction) regime will set in and may be accom-
panied by a wealth of finer effects that are discussed in this chapter.

Some of the theoretical tesults discussed here may also be checked by
analogous computer simulation, a topic discussed by Faetti et al. in Chap-
ter X,

B. Settled and Unsettled Problems in the Field of Chemical
Reaction Rate Theory

The current attempts at generalizing the Kramers theory of chemical re-
actions touch two major problems: The fluctuations of the potential driving
the reaction coordinate, including the fluctuations driven by external radia-
tion fields, and the non-Markovian character of the relaxation process
affecting the velocity variable associated to the reaction coordinate. When the
second problem is dealt with within the context of the celebrated gener-
alized Langevin equation

b= —fe‘(p(f—T)u(q-)dHf(z) (94)

supplemented by the fluctuation-dissipation relationship

9(1)= wng e (95)

these topics seem now to be at a fully developed level of understanding. As
already illustrated in the foregoing sections, the chemical relaxation process
is then described by

b= == [9li= () dr+ 1) (96)

where V' is the external potential driving the reaction coordinate x.

Carmeli and Nitzan® have provided a complete treatment of this prob-
lem. They assumed the memory kernel ¢ to be given the following analytical
expression:

p(1) =@ exp(~I1) (97)



THE THEORY OF CHEMICAL REACTION RATES 433

As already stressed in the foregoing sections, the standard case studied by
Kramers is recovered by assuming T’ to be infinitely large. In such a case,
(1) can be replaced by

#(0)=230(r) =25 5(1) (58)

which, when replaced into Eq. (96), results in the standard set of equations
studied by Kramers [see Eqg. (6)].
The parameter

2
y= (99)
can be thought of as a measurement of the friction intensity in the strong
memory region also.

As we have already discussed, further parameters of interest are the fre-
quencies w; and «, deriving from the harmonic approximation at the bot-
tom of the reactant well and the top of the barrier, respectively. Carmeli and
Nitzan®® evaluated the reaction rate throughout the entire friction dominion
ranging from the low-friction regime (w, > v) to the ligh-friction regime.
{This has also been commented on in Section IL.B.) They also studied the
dependence of the reaction rate on the correlation time

T.= = (100)

Their interesting results are shown in Figs. 11 and 12. We learn from these

;" krgT

-3 -2 +1  logl Wﬁ}b]

Figure 11. Dependence of the reaction rate on the correlation time 7,. A comparison is
made between the analvtical results provided by (---) the two-step model [Eq. (13}, and (—)
those obtained by Carmeli and Nitzan ®** The results of the two-step model were obtained using
an effective friction in order to simulate the non-Markovian characier of the chemical process
[see Eqgs. (116) and {124)]. wy /w, = 5.
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120
100
z |
~ 80
=]
a
: 60 Figure 12. Numerical results provided by
—_ & P
N a0 Carmeli and Nitzan™® (W) £, =5K,;T; (®) E,
=) = 25K,T. These numerical resuits were repro-
= 20 duced by the analytical result provided by Eq.
; (117 using A= KyT/vE, as a fitling parameter.
0 (W) A= 00292 for E, = SK,T- (®) 4= 0236 for
6 1 2 3 4 5wy, E=15K,T

results that the effect of increasing the correlation time 7, is equivalent to
shifting the curve corresponding to the case of white noise to the right. The
height of the curves also changes as 7, is varied, the form of this change de-
pending on the ratio w, /w,.

These results are of very special interest, as they provide a definite answer
to questions such as: (1) Can the rate be increased beyond any limit by ad-
justing the value of 7} (2) On another region of the friction, can an increase
in 7, make the reaction time infinitely large? By inspection of Carmeli and
Nitzan’s results, we conclude that an unbounded growth of 7, makes the re-
action rate vanishingly small; however, when an mitial increase in the rate
(as a consequence of the growth of 7.) is observed, it is bound to reach a
maximum value and then decrease to a vanishing rate for ». — e, This is not
merely a problem of academic interest. Considerable attention is currently
being devoted to enzyme chemistry,*® where the enigma to be solved con-
cerns how the activation process takes place. Enzymes succeed in increasing
the reaction rates by about six orders of magnitude. A possible mechanism
could be the presence of cooperative effects which make ., tend to infinity.
However, Carmeli and Nitzan’s results® show that in the case of a barrier
as high as 18K ;7 the effect of increasing 7, cannot produce an increase in
the chemical reaction rate larger than one order of magnitude. This suggests
that the enigma of enzyme chemistry has to be solved by other mechanisms
- for example, the interaction with nonreactive modes. This is another aspect
concerning the generalization of Kramers theory and it touches problems
which seem to be still the subject of controversy, such as the validity of the
AFEP itself.

Concerning the first aspect, on the other hand, we are already in a posi-
tion to get a fairly definite view, which is clearly illustrated by the results of
Carmel: and Nitzan (see Figs. 11 and 12).
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What about the role played within this context by the general strategy of
this book (as symbolized by the delta-like diagram of Chapter I)7 We shall
devote a large part of this final section to showing how this strategy may
contribute to clarifying the physical meaning of these results. A calculation
completely satisfactory from a quantitative point of view should, however,
rely largely on the methods developed by other authors (those of Carmeli and
Nitzan seem to be of special interest). For the sake of clarity we shall recall
some of the key results of the foregoing sections.

When considering the special case studied by Carmeli and Nitzan, the
RMT replaces Eq. (96) with

xX=uv
b= Te W (101)
w=—0%+Tw+ F(r)
where F(r)is a white Gaussian noise defined by
(F(1))=0

(FO)F(1))=2T(w?) (1) (102)

The physical meaning of Eq. (101) has already been discussed in the forego-
ing sections, as well as in Chapter L.
First of all we shall apply Eq. (101) to study the low-friction regime:

Y < wy (103)

and we assume w; and w, to be of the same order of magnitude. The stan-
dard Kramers theory corresponds to

Q= w, =T (104)

To take into account the fact that f(¢) of Eq. (94) is not rigorously white,
we should explore also the region where

Q=T < w, (105)

which is precisely that explored by Carmeli and Nitzan **® Their latest re-
sults, ™2 however, seem to apply also to

<@ <o, (106}
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Since, in the low-friction regime, the escape is largely determined by the
behavior of the Brownian particle in the well, we shall focus our attention
on that. When considering barriers of large intensity, we are allowed to re-
place Eq. (101) with its harmonic approximation

X=uv

b=—wix+w (107)

w=—Q%—Tw+ F(t)
We assumed the origin of the space coordinate to be at the bottom of the
reactant well. By adopting the method of the stochastic normal modes (see
Chapter II), Eq. (107) is replaced by

é+=—A+£++F+(I)

§E=—A_¢t +F_(1) (108)

£n=— Aok, + Fyl1)

To determine these normal modes one has to diagonalize the matrix

0 ey 0
A=|—iw, 0 iQ (109)
0 - -T

This antisymmetric form can easily be derived from Eq. (107) by multiply-
ing the variables v and w by suitable constants. Note the similarity of this
matrix with that of ref. 39.

We may exploit the fact that w, is much larger than the other parame-
ters, I" and £2. First of all, let us rewrite the matrix A4 in the basis set, where
it can be given the form

. i
fw, 0 E
_ i
A= 0 —iw, — E (110)
LY i
V2 2
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Then, by a perturbation calculation, we obtain

92
AL 2w+ —
T g+ T)

92
A = —jogt —— 111
=T 0T Sy~ T) (111)
Ag=-—T

This means that the normal modes £, and £_ are characterized by frequen-
cies @, and £_ given by

. . Q%wq
R, =ilwgt
w

(112)
0 . 2%,
Tae = — | Wy — — 7, LT
* 2w +17)
both with the same damping,
I‘eff — er — Y (113)

2 Z(wg + I‘z) 2(1+w(2)'r3)

If we focus our attention on the damping while neglecting the less important
effect on the frequencies, we have that the same result could be obtained from
the Markovian system

X=v

(114)
0=~ wix = Tgo+ f*(t)
with the Gaussian white stochastic foree f*(r) defined by
(F2(0)7(1)) = 2L 27) o8(1) (115)

Note that in the non-Markovian case (wg7, > 1) the effective damping

v
Dyp=——"— 116
eff 1+ (AJSTCZ ( )

turns out to be much smaller than the damping in the absence of the exter-
nal field. This is a well-understood effect, discussed at length by Grigolini.®
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A strong external field acting on a non-Markovian system tends to decouple
that system from its thermal bath, thereby rendering smaller its effective
damping,

In other words, if we are exploring the low-friction regime, the interplay
of non-Markovian statistics and external field renders the system still more
inertial, thereby widening the range of validity of the formula provided
by Kramers for the low-friction regime provided that y be replaced by
v/(1+ wir?).

Figure 12 shows that this simple expression agrees fairly well with both
the theory of Carmeli and Nitzan and the result of their purely numerical
calculations. The piots in Fig. 12 show how well the non-Markovian effects
on the rate may be simulated by a simple multiplicative factor (1 + w372) L.
For the sake of comparison, we fitted an expression with this factor to
Carmeli and Nitzan’s results so as to include their accurate Markovian rate.

Using Eq. (113), the Markovian low-friction expression of Kramers [Eq.
{8)] may be generalized to the non-Markovian case,

Y | E B
kiowlr) = T+ ol ( KBT)exp( KBT_) (117)

The discrepancies between the rate given by this expression and that calcu-
lated by Carmeli and Nitzan are mostly due to their improved Markovian
part.

We believe that the arguments above should convince the reader that the
interesting phenomenon detected by Carmeli and Nitzan is another mani-
festation of the decoupling effect, well understood at least since 1976 (see ref.
86). The only physical systems, the dissipative properties of which are com-
pletely independent of whether or not an external field is present, are the
purely ideal Markovian ones. Non-Markovian systems in the presence of a
strong external field provoking them to exhibit fast oscillations are char-
acterized by field-dependent dissipation properties. These decoupling effects
have also been found in the field of molecular dynamics in the liquid state
studied via computer simulation (see Evans, Chapter V in this volume).

The region ranging from y =0 to y ~ w, can also be explored using the
RMT. In Section IV we showed that the basic ideas of the RMT supple-
menied by the generalization of the Kramers theory to the multidimensional
case allows us to recover the simple expression first derived by Grote and
Hynes.*” This quite interesting formula reads

}\f
kH=kTSTw_b (118)
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where
b= 20|
= X
TST = 5 P KT
and
2
(1)
A, = £ 119
A+ @A) (119)
with
$(\)= [ drep(=21)o (1) (120)
In the case considered by Carmeli and Nitzan,?®* we obtain
2
% (121)

A =
A+ +T)

In the high-friction region when the additive noise is almost white, we have
2

%«wb<<y<<r (122)

This means that 2 /y can be disregarded compared to both I" and Q%/T =
v. In other words,

-
It
= |a~8rd

(123)

which is the Kramers high-friction result.

As T decreases, this simple formula results in an increase of A, in quali-
tative agreement with Fig. 11 from the Carmeli and Nitzan work.

We are thus in a position to state that the RMT provides quite simple
formulas which give a clear and simple picture of the chemical reaction rate
as a function of w,r, (or w,7,). The two-step model introduced in Section
I1.A naturally leads to

Kint (1) = Kiggn(7) + Kign (7.) (124)

This expression gives a useful semiquantitative description of chemical rate
in the most general case, Markovian or non-Markovian and in any range of
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friction. Figure 11 illustrates the corresponding results, which are qualita-
tively the same as those of Carmeli and Nitzan.

The generalization of the Kramers theory involving the problem of multi-
plicative fluctuations is still an open field of investigation. A large part of
the discrepancies between the AEP and the other approaches do certainly
derive from the fact that this theory is applied to a set of differential equa-
tions, the formal expression of which seems to be not completely legitimate.
For instance, a rigorous microscopic derivation certainly cannot result in
formal expressions such as those of Eqgs. (38) and (44).

The physical reasons for the acceleration of the chemical reaction rate as
a result of a coupling with nonreactive modes is the subject of interesting
investigations which seem to support the point of view according to which
the AEP can successfully be applied to the study of transient dynamics even
when failing in reproducing the correct equilibrium distributions which are
attained at a much larger time scale. The results of Chapter X show that when
the time necessary to get the final equilibrium state (of Gaussian type) is vir-
tually infinitely large, a quasi-equilibrium state is predicted by the AEP which
is found to be in surprisingly good agreement with the results of analog
simulation. This opens a fertile new field of investigation, which could be of
significant relevance for the theory of chemical reactions and especially that
of enzyme chemistry.
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